skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Nathan S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Most work on how estuarine dynamics impact dissolved oxygen (DO) distributions has focused on tides, but in shallow estuaries with large fetch or small tides, wind can be the primary mixing agent and also drives advection. To investigate how these processes affect DO distributions, an observational study was conducted in the shallow, microtidal Neuse Estuary. Salinity, DO, and velocity profiles were measured at multiple positions along and across the estuary over a 6‐month period. A one‐dimensional model (General Ocean Turbulence Model) provided additional insight into the response of salinity and DO to wind. Salinity and oxygen conservation equation terms were calculated from observations and simulations. Cross‐estuary wind drove lateral circulation and tilted the isohalines, reducing stratification; lateral advection and enhanced mixing reduced vertical gradients and increased the bottom DO. Down‐estuary wind tended to increase the exchange flow and stratification, but concurrently the surface wind‐mixed layer deepened over time. The balance of these processes determined if the water column became fully mixed or remained stratified, and the depth of the pycnocline and oxycline. An expression for steady state surface layer thickness was derived by considering the competition between the horizontal and vertical buoyancy flux, and the predictions agreed well with observations and simulations. Up‐estuary wind inhibited the exchange flow and the combination of advection and mixing homogenized the water column. While these patterns generally held for purely across‐ or along‐channel wind, the response was often more complex as the wind vector varied in orientation and with time. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. The accurate forecast of algal blooms can provide helpful information for water resource management. However, the complex relationship between environmental variables and blooms makes the forecast challenging. In this study, we build a pipeline incorporating four commonly used machine learning models, Support Vector Regression (SVR), Random Forest Regression (RFR), Wavelet Analysis (WA)-Back Propagation Neural Network (BPNN) and WA-Long Short-Term Memory (LSTM), to predict chlorophyll-a in coastal waters. Two areas with distinct environmental features, the Neuse River Estuary, NC, USA—where machine learning models are applied for short-term algal bloom forecast at single stations for the first time—and the Scripps Pier, CA, USA, are selected. Applying the pipeline, we can easily switch from the NRE forecast to the Scripps Pier forecast with minimum model tuning. The pipeline successfully predicts the occurrence of algal blooms in both regions, with more robustness using WA-LSTM and WA-BPNN than SVR and RFR. The pipeline allows us to find the best results by trying different numbers of neuron hidden layers. The pipeline is easily adaptable to other coastal areas. Experience with the two study regions demonstrated that enrichment of the dataset by including dominant physical processes is necessary to improve chlorophyll prediction when applying it to other aquatic systems. 
    more » « less
  3. null (Ed.)
    Estuaries function as important transporters, transformers, and producers of organic matter (OM). Along the freshwater to saltwater gradient, the composition of OM is influenced by physical and biogeochemical processes that change spatially and temporally, making it difficult to constrain OM in these ecosystems. In addition, many of the environmental parameters (temperature, precipitation, riverine discharge) controlling OM are expected to change due to climate change. To better understand the environmental drivers of OM quantity (concentration) and quality (absorbance, fluorescence), we assessed both dissolved OM (DOM) and particulate OM (POM) spatially, along the freshwater to saltwater gradient and temporally, for a full year. We found seasonal differences in salinity throughout the estuary due to elevated riverine discharge during the late fall to early spring, with corresponding changes to OM quantity and quality. Using redundancy analysis, we found DOM covaried with salinity (adjusted r2 = 0.35, 0.41 for surface and bottom), indicating terrestrial sources of DOM in riverine discharge were the dominant DOM sources throughout the estuary, while POM covaried with environmental indictors of terrestrial sources (turbidity, adjusted r2 = 0.16, 0.23 for surface and bottom) as well as phytoplankton biomass (chlorophyll-a, adjusted r2 = 0.25, 0.14 for surface and bottom). Responses in OM quantity and quality observed during the period of elevated discharge were similar to studies assessing OM quality following extreme storm events suggesting that regional changes in precipitation, as predicted by climate change, will be as important in changing the estuarine OM pool as episodic storm events in the future. 
    more » « less
  4. null (Ed.)
  5. Coastal ecosystems display consistent patterns of trade-offs between resistance and resilience to tropical cyclones. 
    more » « less